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Firstly, it is necessary to clear up some misconceptions which may have arisen as a result
of the discussion. The e~pressions for the shear stiffness are not developed on the basis of
any assumptions about fixed support conditions. However. they are implicitly invoked in
the development of the slope-deflection equations in Section 4. The nature of support
conditions will be discussed in more detail later. It is not suggested that the shear behaviour
is a second approximation to the full behaviour of a beam in some kind of asymptotic
expansion. What has been done is to classify six modes of response to the six components
of resultant load that can be applied to a prismatic system (which could be a bar or a truss).
In this conte~t. it is not possible to say that "in general" the shear deflection is two orders
smaller than the bending dclkction, although this can be true in specific instances. For
example, using thc expressions similarly derived for the shear and bending stilfnesses of a
vicrendecl truss, it can he shown (Renton. 1984) that the shear deformation (racking) of a
multi-storey portal frame is typically more signifkant than its hending deformation for up
to forty-storey systems. as suggested hy Lin and Stotesbury (19H I).

The problem examined in the discussion is not a true three-dimensional representation
of a rectangular heam. hut a plane stress approximation to it. Likewise. the shear stiffnesses
listed in the introdudilln result from attempts to redul.:e the prohklll to tWll-dimensillnal
analyses. In this sense. they are similar in that they take no aCCount of the hn:adth to dcpth
ratio of the heam and do not dilfer from one another hy more than 50",jl, The present
analysis docs take account of this ratio and predil.:ts that the shear stilfness ofhroad plank­
like seelions is very mUl.:h less than was previously thought to be the case.

ACl.:ording to Saint-Venant's principle, the only non-del.:aying stress and strain
responses to end loading are the six listed above. The deflected state is not tktermincd
entirely by these responses, bel.:ause rigid-body motions I.:an also occur. These will in turn
depend on the way in whil.:h the system is supported or connected. If the support wnditions
arc related to an end displal.:ement or rotation, these ddkl.:tions must be clearly ddined. It
might appear reasonable to take an average displal.:ement or rotation of the end I.:ross­
section or to usc the detlcl.:tions of the centroid, as for example in Timoshenko and Goodier
(1970) Fig. 27b. However, it is questionable whether in practice a fixed support would
permit displacements of individual points on the end cross-section while preventing the
average displacement or rotation, or that at some specific point. This becomes even more
questionable when it is applied to inhomogeneous beams or to trusses.

The paper uses work and energy principles which arc fundamental to the theory of
elasticity. These can also be used in wnsidering support wnditions. The end n:actions can
do no work. otherwise they cease to be reactions. If this were not so, the thernlOdynamic
prinl.:iple that there arc no free IUIKhes is nouted and perpetual-motion mal.:hines hel.:ome
possible. Work can be done on the end supports, but then the elastic or load-denedion
properties of the supports must be spel.:itied. This leaves the class of workless re~Ktionsmost
commonly used in engil1l:ering analyses. These arc such that either any component of the
resultant end load is zero or the corresponding del1el.:tion through whil.:h it does work is
zero. This ddlection mayor may not be some average del1el.:tion or that of the centroid of
the sel.:tion, However. it can be determined in terms of energy principles, as in Section 4 of
the paper. A fixed end is then one in which all these corresponding detlections are zero,
Pinned ends and roller hearings also correspond to the class of workless reactions. as docs
a free end. Indeed. the shear condition at the free edge of a plate is best understood in terms
of the expressions for work and energy.

In using the engineering theory of beams, it must be borne in mind that only some
form of macroscopic behaviour is being analysed. The governing ditferential equation for
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flexure is fourth order. leaving only two conditions to be specified at each end. These will
usually be a moment [otation condition and a shear force.dispLicemcnt condition. Likewise.
the usual equation for torsion is second orda. permitting only one torque twist condition
to be imposed at each end. However. if warping is constrained at the ends of a thin-walled
bar of open cross-section. the apparent torsional stiffness of the bar can be much greater
than that predicted by the usual Saint-Venant theory of torsion. as was mentioned in the
discussion. This effect has been extensively examined by Vlasov. Gorbunov and Stre!­
bitskaya. Stavraki and others [see for example Renwn (1974ij. The method adopted by
these authors is not to discard the sectional torsional stiffness as meaningless. or replace it
with a value which depends on the end conditions as well as the sectional properties. Instead.
they examine the response of the section to a warping stress system. known as a bimoment.
which has no resultant moment or force. This involves the introduction ofa further sectional
property known as the sectorial moment of inertia or non-uniform torsional constant. The
second-order equation now becomes a fourth-order equation which now permits a second
(bimoment/warping) condition to be imposed at each end. Likewise. if more accurate
analyses of the tlexural!shear behaviour of beams are required. it would seem appropriate
to approach the problem by examining the response of a beam to end stress systems whiL'h
have no resultants but distort the cross-section. Thcn thc cxisting ditrcrcntial cquatioll
would similarly be augmentcd rather than replaced.

Finally. the problem of a concentrated couple: represents no paradox. hut in fUL't
illustrates the need to consider the shear behaviour of a beam as well as its resp~)flse til a
moment. As the two forces approach one another. growing inversely with their separation.
so docs the shear strain induced hetween them. until eventually the material will !~til. This
c1kct can readily be demonstrated experimentally with a pair of scissors.
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