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AUTHOR'S CLOSURE

Firstly, it is necessary to clear up some misconceptions which may have arisen as a result
of the discussion. The expressions for the shear stiffness are not developed on the basis of
any assumptions about fixed support conditions. However. they are implicitly invoked in
the development of the stope-deflection equations in Section 4. The nature of support
conditions will be discussed in more detail later. It is not suggested that the shear behaviour
is a second approximation to the full behaviour of a beam in some kind of asvmptotic
expansion. What has been done is to classify six modes of response to the six components
of resultant load that can be applied to a prismatic system {which could be a bar or a truss).
In this context. it is not possible to say that “in general™ the shear deflection is two orders
smaller than the bending deflection, although this can be true in specific instances. For
example, using the expressions similarly derived for the shear and bending stiffnesses of a
vierendeel truss, it can be shown (Renton, 1984) that the shear deformation (rucking) of a
multi-storey portal frame s typically more significant than its bending deformation for up
to forty-storey systems, as suggested by Lin and Stotesbury {(1981).

The problem examined in the discussion is not a true three-dimensional representation
of a rectungular beam, but u plane stress approximation to tt. Likewise, the shear stitfnesses
listed in the introduction result from attempts to reduce the problem to two-dimensional
analyses. [n this sense, they aresimitar in that they take no account of the breadth to depth
ratio of the beam and do not differ from one another by more thun 50%, The present
analysis does take account of this ratio and predicts that the shear stiffness of broad plank-
fike sections s very much less than was previously thought to be the case,

According to Smnt-Venant's principle, the only non-decaying stress and strain
responses to end loading are the six listed above, The deflected state is not determined
entirely by these responses, because rigid-body motions can also occur, These will in turn
depend on the way in which the system is supported or connected. If the support conditions
are related to an end displacement or rotation, these deflections must be clearly defined. It
might appear reasonable to take an average displacement or rotation of the end cross-
section or to use the deflections of the centroid, as for example in Timoshenko and Goodier
(1970) Fig. 27b. However, it is questionable whether in practice a fixed support would
permit displacements of individual points on the end cross-section while preventing the
average displacement or rotation, or that at some specific point. This becomes even more
questionable when it is applied to inhomogeneous beams or to trusses.

The paper uses work and energy principles which are fundamental to the theory of
elasticity. These can also be used in considering support conditions. The end reactions can
do no work. otherwise they cease to be reactions. It this were not so, the thermodynamic
principle that there are no frec lunches s flouted and perpetual-motion machines become
possible. Work can be done on the ead supports, but then the elastic or load-deflection
properties of the supports must be specified. This leaves the class of workless reactions most
commonly used in engineering analyses. These are such that cither any component of the
resultant end load is zero or the corresponding deflection through which it does work 1s
zero. This deflection may or may not be some average deflection or that of the centroid of
the section, However. it can be determined in terms of energy principles, as in Scction 4 of
the paper. A fixed end is then one in which all these corresponding deflections are zero.
Pinned ends and roller bearings also correspond to the class of workless reactions, as does
a free end. Indeed. the shear condition at the free edge of a plate is best understood in terms
of the expressions for work and energy.

In using the engincering theory of beams, it must be borne in mind that only some
form of macroscopic behaviour is being analysed. The governing differential equation for
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flexure is fourth order. leaving only two conditions to be specitied at each end. These will
usually be a moment rotation condition and a shear force displacement condition. Likewise,
the usual equation for torsion is second order, permitting only one torque twist condition
to be imposed at each end. However. if warping is constrained at the ends of a thin-walled
bar of open cross-section, the apparent torsional stiffness of the bur can be much greater
than that predicted by the usual Saint-Venant theory of torsion, as was mentioned in the
discussion. This effect has been extensively examined by Viasov. Gorbunov and Strel-
bitskaya. Stavraki and others [see for example Renton (1974, The method adopted by
these authors is not to discard the sectional torsional stiffness as meaningless, or replace it
with a value which depends on the end conditions as well as the sectional properties. [nstead.
they examine the response of the section to a warping stress system. known as a bimoment,
which has no resuftant moment or force. This involves the introduction of a further sectional
property known as the sectorial moment of inertia or non-uniform torsional constant. The
second-order equation now becomes a fourth-order equation which now permits a second
{bimoment/warping) condition to be imposed at each end. Likewise, il more accurate
analyses of the flexural/shear behaviour of beams are required. it would seem appropriate
to approach the problem by examining the response of a beam to end stress systems which
have no resultants but distort the cross-section. Then the existing differential equation
would similarly be augmented rather than replaced.

Finally, the problem of a concentrated couple represents no paradox, but in fact
illustrates the need to consider the shear behaviour of @ beam as well as its response to a
moment. As the two forces approach one another. growing inversely with their separation,
so does the shear strain induced between them, untif eventually the material will fad, This
effect can readily be demonstrated experimentally with a pair of scissors.
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